مطالعه اثرات ضد قارچی استانس گل بی‌مرگ (Helichrysum arenarium L.) بر رشد کاندیدا

آبیکینتر و ساکارومایس سروپیشیه

هدیه داوودی مقدم۱، علی مجیدی ثانی۲، میثم‌الله سنگ‌آتش ۳

۱. دانش‌آموزی کارشناسی ارشد علوم و صنایع غذایی، واحد فاویان، دانشگاه آزاد اسلامی، فوچان، ایران.
۲. گروه علوم و صنایع غذایی، واحد فاویان، دانشگاه آزاد اسلامی، فوچان، ایران.
۳. گروه پژوهشی کیفیت و ایمنی مواد غذایی، پژوهش‌گاه علوم و فناوری مواد غذایی جهاد دانشگاهی، مشهد، ایران.

Hediyeh.davoudi@gmail.com

نوبت‌سوز مستند*۴

*متوقف در تاریخ: ۱۳۹۲/۲/۲۹

تاریخ پذیرش: ۱۳۹۲/۳/۵

چکیده

گل بی‌مرگ یک گیاه علفی چندساله، متعلق به خانواده زعفرانی‌ها است که به‌وسیله آن در کشورهای چندین نیست. سیریال‌های از بی‌مرگ از آن استفاده می‌شود. در این مطالعه، استانس بی‌مرگ یک گیاههای گیاه این گل به‌وسیله تقاطع با آب به‌کمک دستگاه کنترل اضافه‌ای تهیه و نمایی از آن بر دو گونه مخمری کاندیدا آبیکینتر و ساکارومایس سروپیشیه به‌وسیله آزمون‌های فون روسیه، در دو گونه مخمریی بررسی شدند. افتتاحیات، این تحقیق حاضر شان داد که استانس گل بی‌مرگ مخمری بی‌کنترلی کاهش یافته و کاهش سطح از همین جراح‌های بی‌مرگ ۱۵۹/۳۱ میکروگرم/میلی‌لیتر و احتمال حاصل گلنگی ۱۷۰۰ میکروگرم/میلی‌لیتر مقایسه با ساکارومایس سروپیشیه نشان داد، به‌طوری که میزان رشد ساکارومایس سروپیشیه در تمام غلظت‌های کمتر از کاندیدا آبیکینتر بود، نتایج این تحقیق نشان داد که استانس گل بی‌مرگ مخمری بی‌کنترلی کاهش یافته و کاهش سطح از همین جراح‌های بی‌مرگ در صنایع غذایی و دارویی استفاده نمود.

واژگان کلیدی: استانس گل بی‌مرگ، حاصل فلات، بازدارنگی، مخمر.

مقدمه

بی‌مرگ‌ها در منشأ فاریچی و در زمره ساخته شده‌اند.

بی‌مرگ‌های هستند که از گذشته تا به حال هم‌ونه‌گی بی‌مرگ‌ها接地 و به‌همین منظور، تلاقی‌های زیادی برای مشاهده، کنترل و درمان این عاکب‌های بی‌مرگ‌زا صورت گرفته است (محمودی و همکاران، ۱۳۸۶). در این میان، قارچ‌ها و مخمرهای انگل‌بر هم‌ونه‌گی به‌عنوان ایجاد بی‌مرگ‌زا از ساخته‌های و مسئول شده‌گاه‌های غذاهای هستند. به عنوان عامل موثر در فساد مواد غذایی نیز مطرح می‌شوند (Demirci et al., 2008; Mahzooni-Kachapi et al., 2012).

کلیدی: مایه‌ای با میه‌ی کارشناسی‌های گیاه‌شناسی و حیات‌پرورشی این اثرات، کاهش‌های معنی‌داری در میزان رشد و عوامل ایجاد‌کننده می‌کند که می‌توان به برکت مخلوط غذایی اثرات، کاهش‌های معنی‌داری در میزان رشد و عوامل ایجاد‌کننده می‌کند که می‌توان به برکت مخلوط غذایی (Demirci et al., 2008; Mahzooni-Kachapi et al., 2012).

کلیدی: مایه‌ای با میه‌ی کارشناسی‌های گیاه‌شناسی و حیات‌پرورشی این اثرات، کاهش‌های معنی‌داری در میزان رشد و عوامل ایجاد‌کننده می‌کند که می‌توان به برکت مخلوط غذایی (Demirci et al., 2008; Mahzooni-Kachapi et al., 2012).

کلیدی: مایه‌ای با میه‌ی کارشناسی‌های گیاه‌شناسی و حیات‌پرورشی این اثرات، کاهش‌های معنی‌داری در میزان رشد و عوامل ایجاد‌کننده می‌کند که می‌توان به برکت مخلوط غذایی (Demirci et al., 2008; Mahzooni-Kachapi et al., 2012).
2. Helichrysum chamoeicetum

Süzgeç et al., 2005

Albayrak et al., 2010b

Aslan et al., 2011

Bluma et al., 2008

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009

Eroglu et al., 2010

Ashtari and Aisa, 2009

Radusiene and Judzentiene, 2008

Yong et al., 2011; Eshbakova and Asya, 2009
جامعیت گل یمرکز با عدم نتایج مثبت در مطالعه کلاسیک گفته می‌شود که به‌طور کلی به سبب بیش از حد سطح قندی، میکروب‌های گردن و همچنین به‌طور کلی به سبب داشتن گل‌های خاصی است. از این رو، می‌توان گفت که میکروب‌های گردن و همچنین به‌طور کلی به سبب میکروب‌های گردن و همچنین به‌طور کلی به سبب داشتن گل‌های خاصی است.

1. Minimum Fungicidal Concentration (MFC)

سال اول/شماره 11/نامه 93 - صفحات 28-31
تحقیقات انجام شده در این آزمون روي دو گونه مخمر کاندیدا/البیکنتر و ساکارومایسنس سرویسیه نشان داد که این اساس قادر است بر روی عفونت‌های منتفی، موثر باشد. نتیجه این تحقیق نشان داد که ساکارومایسنس سرویسیه با حداکثر غلظت بارداریسی 9/65 میکروگرم بر میلی لیتر و حداکثر غلظت کشنده 2/65 میکروگرم بر میلی لیتر، حساسیت استریتر نسبت به کاندیدا/البیکنتر در مقابل اساس گل بی مره دارد. بطوری که میزان رشد ساکارومایسنس سرویسیه در تمام غلظت‌ها از کاندیدا/البیکنتر کمتر بود.

نمونه 1 نتایج اثر ده غلظت منفعت اساس گل بی مره بر روی رشد مخمرها از ساکارومایسنس سرویسیه و کاندیدا/البیکنتر را نشان می‌دهد.

پلیت‌ها به این سه بدست در دو آزمون سانتی‌گردا گرم خاصی‌گاری شدند. غلظتی از اساس که در آن هیچ مخمری رشد نکرد به عنوان حداکثر غلظت قارچ کشی مخمرکشی تعیین شد (جیت ساز و همکاران، 1386). Khosravi et al., 2011، تجزیه و تحلیل آماری به‌منظور تجزیه و تحلیل نتایج از طریق نمودار نتایج انجام شد. تیمارهای آزمایش شامل اساس گل بی مره در 10 غلظت مختلف و بر روی دو میکروگرامسم و در سه تکرار گرفت. جهت تجزیه داده‌ها از نرم‌افزار SPSS در سطح معنی‌داری 0/05 استفاده شد. مقایسه میان‌گروه‌های مربوط به پیشنهاد آزمون چند دان‌نیشن دانکن انجام شد.

نتیجه
نحوه حاصل از مطالعه حداکثر غلظت بارداریسی و حداکثر غلظت کشنده اساس گل بی مره بر روی مخمرها مورد آزمون، در جدول 1 ذکر شده است.

جدول 1- حداکثر غلظت بارداریسی و حداکثر غلظت کشنده اساس گل بی مره بر مخمرها آزمون شده

<table>
<thead>
<tr>
<th></th>
<th>MBC (µg/ml)</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاندیدا/البیکنتر</td>
<td>31/65</td>
<td>19/5/1</td>
</tr>
<tr>
<td>ساکارومایسنس سرویسیه</td>
<td>78/1/65</td>
<td>97/65</td>
</tr>
</tbody>
</table>

* تمامی آزمون‌ها در سه تکرار انجام شد.

نمودار 1- نتایج انساس گل بی مره بر روی رشد ساکارومایسنس سرویسیه و کاندیدا/البیکنتر. نمونه‌های مختلف غلظت‌ها (0-5/0/µg/ml) برای هر میکروگرامسم بر اساس آزمون دانکن می‌باشد.
میکروب گاهی همراه با نتایج بدست آمده، رشد هر دو گونه مخمر با افزایش غلظت اساس گل، یا میزان ویولانس لیکس در غلظت‌ها بر مخمر ساکارومنس سروپسیس موثرتر از کاندیا آلیکن است. طبق نتایج بدست آمده از جدول ۱، اساس گلوکزی مکی و بی‌ثباتی بیشتری از کاندیا آلیکن است که این مورد ممکن است بدلیل مرحله قسمی سولولی باشد که مخمر در آن قرار دارد. بعلاوه این احتمال وجود دارد که با استفاده از فعالیت سولولی مخمر کاندیا به گونه‌ای باشد که ترکیبی فلوانیدی که عامل اصلی ضدخمیری در گیاه گل می‌باشد تأثیر می‌کند.

در عملکرد آنها داشته باشند. ناکامی مطالعات زیادی در زمینه خواص ضدبACTERIA است و عصاره گونه‌های مختلف هلیچریزوم از جمله گل می‌باشد (Rasooli et al., 2010a; Aslan et al., 2007; Stanojkovic et al., 2009) به‌نتیجه‌ی رسته‌ای اما اطلاعات کافی راجع به تأثیر ضدبACTERIA و ضدخمیری اساس گل می‌باشد. طبق نتایج بدست آمده، اساس گل می‌باشد که حذف مخمر کاندیا آلیکن تأثیر بسزایی دارد. این نتایج با نتایج بدست آمده از Süzgeç-Selçuk و Birtekşoz (2011) مطالعات (2007) مطالعات انجام شده بر روی گونه‌ها مختلف هلیچریزوم در منطقه نظر نشان می‌دهد که این گونه‌ها غنی از هلیچریزوم برای ۹۵-۱۱٪ درصد گزارش شده است که مقدار آن کمتر از اکثر گونه‌های هلیچریزوم می‌باشد (Yong et al., 2011). به‌طور کلی تأثیر گونه‌های هلیچریزوم بدلیل تأثیر فلوانیدهای آن است (Süzgeç-Selçuk and Birtekşoz, 2011).

1. Helichrysum compactum
Naringenin, \(A \), Naringenin-5-glucoside, \(B \), and Naringenin-7-glucoside, \(C \), were isolated from the leaves of Helichrysum (Asteraceae) species.

collected from Turkey. Food Chem. 119: 114-122.

